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The Duality between Suboptimization and Parameter Deletion

by
Elmor L. Peterson '

Abstract . q

The main tool used in studying the influence of given perturbation parame-
ters on a given optimization problem is, of course, the corresponding Rockafellar
dual problem (in which the dual variables are in a one-to-one correspondence with
the parameters). However, even when the given optimization problem is defined in
terms of simple formulas, there are many important cases where the corresponding
dual problem can not be computed explicitly (in terms of simple formulas) unless
certain additional (uninteresting) perturbation parameters are included. Under
a very weak hypothesis, the main theorem to be given here asserts that a (sub)-
optimization of the resulting dual problem over the additional (uninteresting)
dual variables produces the desired dual problem (i.e., the dual problem that
corresponds to the original optimization protlem without the additional perturba-
tion parameters). In addition to its uses in parametric analysis this theorem can
be used to show that various decomposition principles are dusl to one another and
hence are essentially equivalent.
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1. Introduction. A given optimization problem is seldom studied in isolation,
but is usually embedded in a parameterized family of closely related optimiza-
tion problems. There are gene%ally ;nny such families to choose from, but for
practical reasons the family chosen asually includes as parameters at least all
of the potentially variable "problem inputs". The other parameters included
may not have any practical significance, but are chosen because their presence
makes certain computations much more tractable. 1In defining the parameter
scales it is advantageous to make zero coincide with the given problem, so that
the input parameters can also be interpreted as perturbations of the given input
data.

In engineering design, management science, and operations research there are
at least two compelling practical reasons for studying such problem famjilies:

(1) a designer or decision-maker frequently needs to know how his optimal design
or decision changes with changing input data; and (2){he also needs to know the
sensitivity of his optimal design or decision to small perturbations of his given
input data, so that he can establish the accuracy needed for such data. Moreover,
in the prediction of scientific phenomena through the use of variationmal princi-
ples there are clearly analogous reasons for studying such problem familfes.

Of course, the indispensable tool to be used in all such studies is the corre-
sponding Rockafellar dual problem (13,14,15],

In "ordinary mathematical programming" the only perturbation parameters con-
sidered are those that perturb the given upper and/or lower bounds placed on the
constraint functions. As demonstrated on page 320 of (14], the corresponding
loekaiqllit dual problem is then just the "ordinary dual problem" that evolved
from the 'Wolfe dual problem” (16] via the work of Falk [4]. Unlike duality in
liaear pt"!lllll', the urd&nlry dual ptdblli gnhorllly can not bc computed ex-
plicitly (h ﬁdt- of mpu m-ulu) , even uﬁon thc objccttvo and constraint
functions in the given problem are expressed in terms of simple formilas.

o 3 W T
SN R g
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1. Introduction. A given optimization problem is seldom studied in isolatiom,
but is usually embedded in a parameterized family of closely related optimiza-
tion problems. There are geneially ;mny such families to choose from, but for
practical reasons the family chosen ausually includes as parameters at least all
of the potentially variable '"problem inputs". The other parameters included
may not have any practical significance, but are chosen because their presence
makes certain computations much more tractable. In defining the parameter
scales it is advantageous to make zero coincide with the given problem, so that
the input parameters can also be interpreted as perturbations of the given input
data.

In engineering design, management science, and operations research there are
at least two compelling practical reasons for studying such problem families:

(1) a designer or decision-maker frequently needs to know how his optimal design
or decision changes with changing input data; and (2) he also needs to know the
sensitivity of his optimal design or decision to small perturbations of his given
input data, so that he can establish the accuracy needed for such data. Moreover,
in the prediction of scientific phenomena through the use of variational princi-
ples there are clearly analogous reasons for studying such problem families.

Of course, the indispensable tool to be used in all such studies is the corre-
sponding Rockafellar dual problem [13,1L4,15].

In "ordinary mathematical programming" the only perturbation parameters con-
sidered are those that perturb the given upper and/or lower bounds placed on the
constraint functions. As demonstrated oo page 320 of [l4], the corresponding
Rockafellar dual problem is then ju;t the "ordinary dual problem" that evolved
from the ‘Wolfe dual problem” {16] via the work of Falk [4]. Unlike duality in
unur‘pmm,; thq -orc_lin:t-y- dual probleam generally can not be computed ex-
plicitly (in ur- of simple t&-ulu), even vhen the objective and constraint

functions in the given problem are munod in terms of simple formulas.




According to Rockafellar (on page 322 of [14]), this major obstacle to working
with the ordinary dual problem is, in a certain sense, due to the fact that the
upper and/br lower bound perturbation patnmeters'"are not enough to compensate
for nonlinearities of the constraint functions'":

In (generalized) "geometric programming" there are additional perturbation
parameters that compensate for such nonlinearities. In fact, [12] (and, for a
limited formulation, page 324 of [14]) shows that the corresponding Rockafellar
dual problem is then just the '"geometric dual problem" that evolved from Chap-
ter VII of [3] via the work of Peterson [7,8,9]. Like duality in linear pro-
gramming, the geometric dual problem generally can be computed explicitly (in
terms of functions that in many important cases have very simple formulas).

In fact, geometric programming duality is, in retrospect, a more natural exten-
sion of linear programming duality than is ordinary programming duality.

Some, though usually not all, of the additional perturbation parameters may
actually perturb other problem input data and hence be of interest in their own
right. In fact, this phenomena can be clearly illustrated by the following five
classes of optimization problems (which, incidently, also indicate how geometric
programming has more closely unified many of the major subfields of optimization
theory).

In prototype geometric programming (described by examples 1 and 6 in sec-
tions 2.1 and 2.2 of [9]), nonconvex inseparable ordinary "posynomial" optimiza-
tion problems are formulated as convex separable geometric programming problems
in which the additional perturbation parameters perturb (the logarithm of) the
given posynomial coefficients. Generally many, though usually not all, of the
posynomial coefficients are potentially variable inputs » 8uch as costs per unit
quantity of materidl.

“In the theory of "nonlinear networks" (described by example 5 in section 2.1
of [9]), the variational principles employed are in essence already formulated as




separable geometric programming problems in which the perturbation parameters
perturb the given input "flows" or input "potential differences" and certain
other (physically imperturbable) quantities. In a recent economics extension [10]
the perturbation parameters perturb.the given input "flows" or input "costs" and
vprices" and certain other (economically imperturbable) quantities.

In the theory of "dynamic programming" with linear "transition functions"
(described by example 4 in section 2.1 of [9]), the multistage optimization prob-
lems considered are readily recognized as partially separable geometric program-
ming problems in which the perturbation parameters translate and hence perturb
the given "policy" and "state" sets as well as the given "initial state" and
"final target" sets. :

In facility location theory (described by example 3 in section 2.1 of [9]),
the inseparable ordinary "generalized Weber problems" considered are easily formu-
lated as (partially separable) geometric programming problems in which the addi-
tional perturbation parameters translate and hence perturb the given locations
of the previously existing facilities.

In the theory of "IP programming' (described by mg;le 2 in section 2.1
of [9]), ¢ ? constrained lp regression problems and inseparable ordinary quad-
ratically constrained quidratic programming problems are formulated as separable
geometric programming problems in which the additional perturbation parameters
perturb the given vector that is being "optimally approximated".

In summary, the geometric programming approach to a given optimization prob-
lem is generally much more powerful than the ordinary programming approach. In
fact, many inseparable ordinary programming problems can be formulated as sepa-
rable geometric programming problems; and the corresponding geometric dual prob-
lem provides the means for analyzing the effect of a much broader class of input
perturbations. Moreover, there are many important cases where the corresponding

geometric dual problem can be derived in terms of very simple formulas even
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though the corresponding ordinary dual problem can be expressed only implicitly
in terms of the solution of another parameterifed family of optimization prob-
lems -- a dichotomy that is explained in [11]. '

Although such tractability provides a refativeiy easy analysis of the corre-
sponding problem family, the preceding five examples indicate that in many impor-
tant cases such problem families are larger than'desired; that is, they have
perturbation parameters that perturb given input data that is actually imper-
turable according to real-world considerations. Such excess perturbation parame-
ters can be a dimensional curse because they can drastically increase the number
of certain computations without any corresponding increase in the amount of usable
information. However, the main theorem to be established here implies that such
perturbation parameters can be effectively deleted (i.e. kept equal to zero) by
suboptimizing the geometric dual problem over the corresponding dual variables.

In large-scale linear programming it is known that the "Benders decomposi-
tion" [1] of certain structured dval problems (by suboptimization) is "dual" to
the "Dantzig-Wolfe decomposition" [2] of the corresponding primal problems (by
Lagrangian optimization). That type of decomposition duality can be viewed as a
corollary to the main theorem of this paper. 1In fact, the main theorem of this
Paper can also be used in large-scale geometric programming to dualize certain
decomposition principles described in subsections 3.1.6 and 3.3.6 of [9].

The only prerequisite for this paper is some of the convexity theory in
[14] -- especially the theory having to do with the "relative interior" (ri 8)

of an arbitrary convex set S ¢ IN (N-dimensional Euclidean space).

2. !ggkgggllg;_gggligx. Suppooe that g:C is a (proper) function g with a non-
empty (c!fccttvc) domain C ¢ B > and assume that the independent variable (d,p)
in C 1s the c-rc.oian product of a "dcctoion" (vcc:or) variable d and a "perturba-

ttoa" (vcccor) pnranntcr P .
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Consider the parameterized family G that consists of the following optimiza-

tion probiems A{p) .

PROBLEM A(p) . Using the "feasible solution" set
s(p) € (a](4,p) €} ,
calculate both the "problem infimum"
o(p) & dinf g(d,p)

€s(p)
and the "optimal solution" set
s"(p) 2 (a€s(p)|a(d,p) = 0(p)} .

For a given perturbation p , problem A(p) is either *consistent" or "incon-
sistent", depending on whether the feasible solution set S(p) is nonempty or
empty. The (effective) domain of the infimum function @ is the "feasible pertur-
bation" set

el {p|problem A(p) is consistent} ¥
vhich is obviously identical to {p|(d,p) €C for at least one d} and hence is not
empty. Unlike the function g, the function @ may assume the value - . However,
for our purposes, it is not advantageous to follow Rockafellar's custom of arti-
ficially defining g and @ to be +» outside their respective domains C and P .
Now, suppose that g:C has a "conjugate transform” h:D ; that is, suppose

there is a function h with a nonempty domain

D2 ((q,0)] sup  [{y,d) + Ce,p) - g(d,p)]) < s}
(d,p) €C

and function values

h(q,e) £ sup ({q,d) + (e,p) - g(d,p)] .
(d)P) €C

The inner product (q,d) associates the "dual perturbation® parameter q with the
"primal decision" variable d, and the inner product (e,p) sssociates the "dual
decision” varisble e with the "primal perturbation” parameter P .

Consider the parameterized family 8 that consists of the foliowing optimiza-

tion problems B(q) .
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PROBLEM B(q). Using the feasible solution set

A
T(q) = {e|(q,e) €D} ,
calculate both the problem infimum

2

v(q) inf h(q,e)

e€T(q)
and the optimal solution set

T"(q) 2 {e €T(q)|n(q,e) = y(q)}

Needless to say, the domain of the infimum function y is the feasible per-

turbation set

2 é‘{q\prdblem B(q) is consistent} ,
which is clearly not empty.

Due to the known symmetry [5,6,14] of the conjugate transformation on the
class of all closed convex functions g:C (as well as the obvious symmetry of the
preceding association of perturbation parameters and decision variables), families
G and B are termed Rockafellar dysl families, and problems A(0) and B(0) are termed
Rockafellar dual problems. Actually, Rockafellar [13,14,15) formulates 8 as a
family of maximization problems by placing minus signs in front of the sup and e in
the definition of h:D . Although that formulation facilitates specializations to
(the standard formulations of) linear programming duality and ordinary programming
duality, the preceding formulation facilitates a specialization [12] to geometric
programming duality.

To (re)orient the reader toward the preceding formulation, we now summarize

Rockafellar's most relevant results in terms of that formulation,

Iheorem O . Suppose the function g:C is convex and closed (and hence has a
sonjugste transform h:D). Then,

(1) either the infimum function @ is finite and convex on its domsin P
oc 9(p) = ~» for each p € (r1 @),




o'

(1) the infimum function ¢ is finite on its domsin @ if and only if the dual

problem B(0) is consistent; in which case

(1) the dual ob]ect:l'.ve function h(0,:):T(0) is the conjugate transform
of 9:P,
(11) the dual infimum y(0) is finite if and only if O is in the domain p°
of the closure <p°:Pc of 9:P, in which event
0 = 9°(0) +¥(0) and %°(0) = T (0),
(111) if the primal problem A(0) is also consistent, then O is in the
domain ¢ snd
9°(0) < (0), with equality only if dp°(0) = d9(0),
(iv) the infimum function ¢ can differ from its closure ¢° only at
relative boundary points of P,
(v) if the dual problem B(0O) has a (strongly) feasible solution ¢’ for
which (0,¢" )€(ri D), and if the dual infimum y(0) is fimite, then
(a) primal problem A(0O) is also consistent,
()  9°(0) = 9(0) and hence 0 = §(0) +¥(0)
(c) the primal optimal solution set S (0) # ¢.

Conclusion (v) is, of course, the relevant version of "Fenchel's theorem'.

It is important to note that conclusions (II) and (i) to Theorem O provide

a_method for comstructing, without the use of numerical optimization techniques,
the closure tpc:Pc of ¢:P (which, by virtue of conclusion (iv) to Theorem O, is

essentislly the desired infimum function ¢:P). In particular, if the dual
feasible solution set T(0) is not empty (which, as indicated by conclusions (I)
and (II) to Theorem O, is the only nontrivial bconvcx case), T(0) can of course

be covered with a meah

e {01,02,...,0-,...} € T(0) ,

wvhich need only contain a finite number m of pointe l":\'ﬂu T(0) 1s bounded.
Each mesh M leads to both an approximating function that bounds Qc from below

-




and an approximating function that bounds cpc from above. Moreover, it is a con-
sequence of conjugate transform theory that these lower and upper approximations
can be made with arbitrary accuracy, simply by choonin; the mesh M to be suffi-
ciently dense in T(0).

To obtain the lower approximating function, first note that conclusions
(1) and (1) to Theorem O imply that cpcch is the conjugate transform of h(0,-):T(0).
It is then clear that q:c is bounded from below on P° by the function cp";' whose

function values

<»‘,’(x»)‘=31 sup (¢e',p)~n(0,e!)] for each pef".

e
Being the supremum of affine functions makes tp: convex and, when M is finite,
polyhedral.
'fo obtain the upper approximating functiom, first note that the (Young-

Fenchel) "conjugate inequality" for ¢°:p° and h(0,*):T(0) asserts that
3 & 1 i 1
i 9@ (p) = (e",p) -h(0,e”) for each p €d,h(0,e7), p U3 & BE-RAIE Sl

It 1s then clear from the convexity of qﬁc that affine interpolations between such
function values bo@nd (pc from tbou In fact, q;c is obviously bounded from above
by the function cp: whose function values are simply the infimum of all corre-
sponding interpolated values. clérly, (p: is convex and, when the number of
interpolation values is finite, polyhedral.
For the preceding method to be practical, it is clear that the dual objec-
tive function h(0,-):T(0) must be computed explicitly (in terms of simple
formulas) -- a computation that may be possible only if certain additional
(uninteresting) perturbation parameters are included as components of p . How-
*  ever, the following section shows how to subsequently delete such additional :

parameters (i.e. keep them zero) by judiciously choosing each mesh M.




3. Ihe main results. The duality between suboptimization and parameter deletion

can be crystallized as the following theorem.

Iheorem 1. Suppose that g:C is convex and closed, and let the component parti-
tions
A
(d,p) = (d:P')Pf)

(q,e) Q (Q)":ef)

be compatible in the sense that p' and e' have the same dimension (which means
of coyrse that p* and ¢ also have the same dimension). If O € (ri @*) where

R {?" |(d,p',¥) €C for at least ome (d,p')},
then a deletion of p° is the dual of a (sub)optimization over ¢ in the sense that
(1) the function g’ :C’ with domain

¢ e {(d,p')'(d,p',O) GC}‘

& (d,p') € g(4,p',0)
ag its ¢ ste transform the function b’ :I° with domsin

P £ {(q,e')](q,e',& ) €D for at least one ¢ }
and function valyeg

v (q,e') & inf h(q,e)d )
Q.GT.(QnQ') :
where
T,(0,e') £ (€ [(q,e",¢) €D)
(tt)_;im |
.(sa") Lieer ofs0) |h(1.0 €)= ¥ (q,0')}
is not empty for each (q,e') €D°.




Proof. For a fixed but arbitrary (q,e') consider the programming family whose
infimm function ¢ .;q,e'):@ has function values

ARa,e) 2 nf (g(dp",P) - (q,d) - (e*,p")] ,
(dm')ﬂ'(lf)

where

) £ ((4,p")] (d,p",5) €C) .

The function g(-,x,* ) - (q,*) ~ (e',x):C clearly inherits convexity and closedness
from g:C, so Theorem O can be applied to this family and its dual. To compute

its dual, simply observe that

sup [(t A+ (r',p')+ (e ) - (8(d,p',p") - (q,d) - <."P')”
(d,p,p) €

is finite if and only 1if (r,r',d) €D- (q,e',0), in which case this supremm
equals h(r+q,r' +e',d). Consequently, the dual family has an infimum function
¥{-,X;q,e'):MNq,e') with domain

df(q,c') 2 {(x,e*)|(xr,c',& €D~ (q,¢',0) for at least one ¢}
and funqtiog valﬁu ‘

i _
W{r,r';q,e') = inf h(r+q,r'+e’,d)
ot iskaulels Oo. Dgntaymmg ) ditboani 1112

M, q,o') : {el (r,r'.-’) €D- (.,.-,o)]

¥

lw, the hypothuu that 0 E(ri @) along with conclutom (1) through (1)
of Theorem O imply that ¢f{0;q,e') is finite if and only 1f 170,0;q,e') # §.

But this means :Mt(";?sec f(q,l)+ (e',p') -g\d,p')] 1s finite if and only {i;
(q,¢') €7 ; im which case (the dusl of) conclusion (v) to Theorem O (relative to
the infimum function ¢ :p°) asserts that

dgevm i3 §iid 0w P4 ( ").(.o t),, ‘v:; e - 5 ]
(‘.:g“tt 2R .o_.)';!_ h'(ul)'

a4
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provided we can show that there exists (d,p') €SY0) for which (d,p',0) €(ri C).
Toward that end, observe that (*=JC where J is the orthogonal projector
onto the ptaxes. From the hy;othu'h that C is convex and from Theorem 6.6 on
page 48 of [14] we now infer that (ri @)= J(ri C). Consequently, the hypothesis
that 0 €(ri @) implies the existence of a point (d,p',0) € (ri C) for which
(d,p') €5°(0) . ; q.e.d.

It is important to note that conclusion (i) to Theorem 1 is the key to
extending our parametric programming method to a method for constructin , with

only a limited use of numerical optimization techniques, the restriction 9°(-,0)

of 9°:¢° to the desired domain

' 2 (p'|(prs0) €7 .

In particular, observe that the appropriate dual feasible solution set

{0) e{e'|(0,e') €P} = {e'|(e',€) €T(0) for at least ome e} .
The latter representation shows that T,(0) is not empty if and only if T(0)
is not empty; in which case T,(0) can be computed explicitly in terms of T(0),
even though it is gcncraliy impossible to compute W (0,e') explicitly in terms
of h(0,e',e’). Consequently, given that T(0) is not empty and can be computed
explicitly (in terms of simple formulas) , the latter representation shows that
Te(0) can also be computed explicitly, and hence can easily be covered with a

s PRt e vegtey .
Each mesh M* leads to both an approximeting function thet bounds ¢°(-,0) from
below and an approximating function that bounds Qc:(g,O) from above -- approxi-
mations that can be g@o;-;uth._ a:p-_l,tnry accuracy, simply by choosing the mesh
¥ to be sufficiently dense in T,(0) . bt
Now, the derivation at the end of section 2 (applied to ¢: € and ¥': PP,
rather then to g:C and h:D) produces elu thmtncu; function ¢‘: whose




function values

¢§'(P',O) 2 sup [(e'i,p')-h'(o,e"")] for each p'€p™

1€{1,2,...
Note that the only nontrivial ingredients in this formula are the numbers
h‘(o,e"‘),i €{1,2,...} ~- pumbers that can be obtained from (sub )optimations of
h(o,e'!,&) over € €T, (0,e'l), hopefully "with only a limited use of numerical
optimization techniques" (because of a hopefully small dimension for ¢*).
The derivation at the end of section 2 also produces the upper approxi-
mating function cp:i whose function values are simply the infima of all corre-

sponding interpolated values, computed fro- the interpolating values

o°(p',0) = (e'!,p") -10,e'!) for each p'€d, Mo,ert), 1a12,... .
However, the sets 6.,11‘(0,.'1), 1€(1,2,...] in this formula are generally
difficult (if not impossible) to compute, due to a lack of simple formulas
for 1(0,-):% (0).

The following theorem provides a remedy for the preceding difficulty.

Theorem 2. 1If the hypotheses of Theorem 1 are satisfied and if e’ €%(0),
then 5 : ; s S :
(1) there exists at least ome vector p' ea.,h'(o,c') vhen e' € (r1170)),

(11) (p' ,o)ea h(o,c' € ") vhen p' €3_,b°(0,e') and &* er (0,e'),
(111) ¢°(p* ,0) = (e',p') - h(0,e',&") yhen (p',0) €3 h(0,0',&*).

Proof. Conclusion (i) is an ismediate consequence of convexity theory, because
b(0,:):% (0) is the conjugate transform of ¢(-:,0) and hence is convex and closed.
To prove conclusion (ii), observe that
8'(0,e't) 20,0’ )+ (p',a'? - 0') for each o't €L (0).
But K°(0,e')= h(0,e',8*), oo

B(0,a't) 2 0(0y0" 8" )h(g,.o't-v) ot L DUE




Using the definition of KW*(0,e't) , we now infer that

RO— PR

—

h(0,e't,e t)2h(0,e',&*) + (p!,e't -e') for each (e't,e’t) € T(0),
vhich implies that

RpR——

5 h(0,e't,&* t)2h(0,e',€*)+((p',0),(e't,d 1) - (e',%)) for each (e't,et)€T(0).
: Hence (p',0) €3,h(0,e',&*).

Conclusion (iii) is immediate from conclusioms (I) through (i) of Theorem O

and conjugate transform theory. q.e.d.

It is important to note that conclusion (1) to Theorem 2 asserts that the

sets be,h‘(o,c"'), 1€{1,2,...}, in the formula for interpolating values, are not

empty vhen M ¢ (riT,(0)) -- a rather unrestrictive condition on M . Moreover,
conclusion (i1) to Theorem 2 and conclusion (1i) to Theorem 1 together imply

that each p' ea.,w(o,.-‘) can be obtained from any set a.h(o,o"',d") for which

| ‘ f* 6'1':(0,0"'). Finally, conclusion (111) to Theorem 2 asserts that our formula
for interpolating values can actually be expressed in terms of the sets
b‘h(o,c'i,e"), 1€{1,2,...] -- sets that tend to be (relatively) easy to compute,

due to the frequent availability of (relatively) simple formulas for h(0,*):T(0).

L. Decomposition duslity. This topic involves s minimex representation
[14, part III) of the Rockafellar dusl problem B(0) in terms of a (generalized
Lagrangien) saddle function £ .

To comstruct £ from the given function g:C, let

f _ ARELEIME S g {a](d,p) €C for at least one ?} »
| and suppose that

2(4) £ (pl(a,p) €C) for a€d .

Also, suppose that

B(4) £-{e'tar * 13(a,p) - (0,p}] 10 tintee) for a €8,
pEP(d)

A Y A




and let

A

eSS n E) .

d€s ‘ .

Then, £ has domain § x & and function values

£(d;ze) £ inf (8(d,p) -(e,p)] for d€P and ece .
: pEPR(d)

To obtain the minimax representation of problem B(0), note that

inf 4inf [g(d,p) - (0,d) - (e,p)]
d €D pEP(d)

inf [s(d,p) (0,4d) - (e,p)]
(d:P)

-  sup [(O,d)+(e;P>"8(d,P)]~
(d,p) €C

inf $£(d;e)
ded

These equations clearly imply the objective function identity

inf £(d;e)+h(0,e) =0 for e€T(0);
ded :

from which we readily infer the minimax (actually maximin) representation

sup inf £(d;e)+ inf h(o,e) =
ece de€d e €T(0)

Now, under the hypothau of Theorem 1, a nadle £unct1°n L :® x & can be
constructed from the given function g‘ :C in the same way that $:8x& has been

constructed from g:C.  Moreover, conclusion (1) to Theorcm 1 then implies the
minimax representation

sup inf L(d;e')+  inf inf h(0,e’ a’) =0,
O'Ee' deg c'G'l'.(o) fer o(0se')

This equation upnun tlu duality between a gomttuud Dcnt:ig-wo‘lfo ‘decompo-
sition llld a 'cacuu:od lcndcu dccoqouuon. 'l‘ha outcr supremum and the outer
tnﬁ- an tlu rnpocun -unr probl-l, and the mmr :lnfm decompose into
rupumq m- m ﬂ- M u wumt "npurnuuy" nnd 'sparsity" --

¥

uqunn-u on gzc tlut ccn buc bc umlantood 1n chn contut ot subsections
’ 5 AR T S o B TR

3.1.6 “3 3 3 of [9], vl.qnd from the vlncut potnt ot (12]
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